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We study the two-dimensional, laminar interactions between a contaminated free 
surface and a vortical flow below. Two canonical vortical flows are considered: a 
pair of vortex tubes impinging onto the free surface; and an unstable shear wake 
behind a body operating on the surface. A quantitative model for free-surface viscous 
flows in the presence of soluble or insoluble surfactants is developed. For the low to 
moderate Froude numbers considered here, for which weakly nonlinear free-surface 
boundary conditions are valid, the surface boundary layer and vorticity production 
are weak for clean water and the vortical flow evolution does not differ qualitatively 
from that under a free-slip boundary. When even a small amount of contamination 
is present, the flow can be dramatically affected. The vortical flow creates gradients 
in the surfactant surface concentration which leads to Marangoni stresses, strong 
surface vorticity generation, boundary layers, and even separation. These significantly 
influence the underlying flow which itself affects surfactant transport in a closed-loop 
interaction. The resulting flow features are intermediate between but qualitatively 
distinct from those under either a free- or no-slip boundary. Surfactant effects 
are most prominent for insoluble surface contamination with likely development of 
surfactant shocks and associated surface features such as Reynolds ridges. For soluble 
surfactant with initially uniform bulk concentration, surface concentration variations 
are moderated by sorption kinetics between the surface and bulk phases, and the 
overall effects are generally diminished. For initially stratified bulk concentrations, 
however, the evolution dynamics becomes more varied and surfactant effects may 
be amplified relative to the insoluble case. The dependence of these results on the 
properties of the contamination is studied. 

1. Introduction 
The behaviour of vortical flows near a free surface is complex due to the dynamic 

couplings among the effects associated with the deformable boundary, viscosity and 
surface stresses. In the real ocean or laboratory settings, the situation is further 
complicated by contamination of surface-active material (surfactant) on the free 
surface which may significantly affect the underlying flow. 

Without considering possible surfactant effects, Barker & Crow (1977) used a free 
surface to model a stress-free boundary in their experiment on ground effects on 
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the motion of a vortex pair. Apparently due to the presence of contamination, they 
observed ‘rebounding’ of the impinging vortex pair for both a free surface and a solid 
boundary, and concluded that both boundaries have similar effects on the motions. 
More recent experiments by Bernal et al. (1989) showed that the rebounding effect 
of a vortex ring or pair impinging a free surface was much reduced when the free 
surface was cleaned by draining. Further experiments and computations by Hirsa 
et al. (1990) for a vortex pair confirm that contamination is the cause of dramatic 
changes in the resulting vortical motions. Numerical studies incorporating the effect 
of insoluble surfactant contamination on the surface/vortex pair interaction were 
conducted by Wang & Leighton (1990) and Tryggvason et al. (1992) in which the 
free surface was assumed to be flat, and by Yeung & Ananthakrishnan (1992) who 
considered nonlinear effects. These numerical studies largely confirm the experimental 
observations of Bernal et al. (1989) and Hirsa et al. (1990). 

The differences in the effects of clean and contaminated surfaces on the underlying 
vortical flows are due to the well-known Marangoni effect which is a closed-loop 
interaction among the hydrodynamic motion, surfactant concentration transport and 
surface tension. The presence of surface agents generally lowers the local interfacial 
tension. Hydrodynamic disturbances result in a non-uniform distribution of surfactant 
concentration on the free surface, and consequently local interfacial tension gradients 
are created. The resulting shear stresses on the free surface lead to strong surface 
vorticity generation which interacts with and changes the structure of the bulk flow. 

To understand and quantify these effects and the dependence on the surfactant 
properties, we develop a quantitative description and model for free-surface viscous 
flows in the presence of soluble or insoluble surfactant. The degree of surface activity 
of contamination depends on the surface sorption and mixing in the aqueous phase. 
In general, inorganic ions in water are attracted into the aqueous phase and are 
thus soluble. (If an ionic solution is very dilute, the Gouy-Chapman double layer 
can be quite thick and then ions behave as if very surface-active (Harper 1974).) 
On the other hand, typical organic compounds with a long-chain hydrocarbon tail 
and a polar head are relatively insoluble. The present model includes convection- 
diffusion-sorption processes governing the evolutions of bulk and interfacial surfactant 
compositions and their coupling to the vortical flow dynamics through the stress 
boundary conditions. The coupling mechanism between the surfactant transport and 
the free-surface flow is given via the equation of state which relates the surfactant 
concentration to the surface tension. The boundary-value problem governing the 
viscous free-surface flow, the transport of soluble and insoluble surfactants, and the 
coupling equation of state are given in @2 - 4. 

In numerical simulation, it is often necessary and desirable to make simplifying 
linearizations of the free-surface boundary conditions based on presumed scales for 
the associated lengths and velocities. In $5, a set of weakly nonlinear free-surface 
conditions and surfactant transport equations are derived based on two vertical 
length scales corresponding to the thickness of the free-surface boundary layer and 
the amplitude of the free-surface motion respectively. The weakly nonlinear free- 
surface boundary conditions include the production of free-surface vorticity associated 
with diffusion, unsteadiness, convection, Marangoni effect, and surfactant viscosity, in 
addition to the classic ‘curvature effect’ term of Batchelor (1967) and Lugt (1987). The 
numerical method and implementation for solving the coupled viscous free-surface 
flow and surfactant transport equations are then described in $6. 

Guided in part by existing experimental investigations, we first study, as a canonical 
problem, a pair of vortex tubes parallel to the free surface and impinging on it. For 
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comparison, the clean surface case is first considered in $7.1. We then focus our 
attention on the effects of soluble and insoluble surfactants in $7.2. Of special note 
is the effect of solubility which has not been addressed in previous simulations. 
In $7.3 we examine in some detail the effects of the various properties affecting 
surfactant transport and in particular the adsorption/desorption kinetics of the 
soluble surfactant. 

In the real ocean (or some laboratory) environment, the effect of surfactant solubility 
is further complicated by the (initial) variations of the bulk concentration caused either 
by bulk-phase temperature and density stratifications, or the nature and location 
of the contamination source. In $7.4 we consider initial bulk concentrations that 
are vertically stratified. The evolution dynamics become more varied and overall 
surfactant effects may be either amplified or diminished depending on the initial bulk 
distribution. 

Finally, in $8, we consider the effects of surfactant on the development of an 
unstable free-surface shear wake. This problem was studied by Triantafyllou & Dimas 
(1989) and Dimas & Triantafyllou (1994) (see also Dimas 1991) who considered the 
inviscid case. At low Froude numbers, they identified two distinct regimes of linear 
instability corresponding respectively to low (mode I) and high (mode 11) wavenumber 
disturbances. In the present study, we simulate the cases in Dimas & Triantafyllou 
(1994) but include the effects of viscosity and surfactants. As expected, the effect 
of viscosity is small for moderate Reynolds numbers, but the effect of even a small 
amount of surface contamination is dramatic especially for mode I interactions. 

We should point out that the Marangoni effect is a well-known mechanism in the 
classical context of damping of surface waves by spreading films (see, for example, 
van den Tempe1 1965, and more recently, Alpers & Huhnerfuss 1989; Lucassen 1982). 
These studies emphasize primarily interactions between the surface motions and 
surfactant transport, and their consequence in terms of attenuation of surface waves. 
In the present work, the focus is on local surface features and the accompanying 
evolution of underlying vortical structures. Such Marangoni effect mechanisms of 
free-surface interactions with primary vortical structures have only recently been of 
research interest, motivated by experimental observations such as Bernal et al. (1989). 

In this study, we consider only two-dimensional interactions. The formulations and 
computational method developed can be extended to three-dimensional flows in a 
straightforward way. New physical mechanisms are introduced, however, associated 
with vortex stretching, turning and connection and, to a lesser degree, with three- 
dimensional surface deformations. The interaction features and modification of 
underlying vortical structures due to Marangoni effect will be more complex and 
drastic. These are subjects of current investigations. 

2. Viscous free-surface flow 
We consider the motions of a two-dimensional, viscous and incompressible bulk 

flow, and a free surface with or without surfactant contamination. In the following 
formulation, all variables are normalized by a characteristic length L, a velocity scale 
U, and the density of the bulk fluid p. The motions of the bulk flow are described by 
continuity and Navier-Stokes equations : 

u, + w, = 0, (2.1) 



318 

and 

W-T. Tsai and D. K.  P. Yue 

au 1 
- + uux + wu, + p x  - - (u, + uzz) = 0, 
at g e  

1 aw 
- + m v x  + wwz + p z  - - (wxx + W Z Z )  = 0, 
at g e  

(2.3) 

where u and w are horizontal and vertical velocities respectively, p the dynamic 
pressure, ge = U L / v  the Reynolds number, and v the kinematic viscosity of the bulk 
fluid. 

On the free surface ( z  = q) ,  the boundary moves as a material surface which gives 
the kinematic boundary condition 

on z = q ,  ar - at + uqx - w = 0 (2.4) 

where q is the free-surface elevation. The conservation of linear momentum on the free 
surface gives rise to stress conditions imposed upon the contiguous bulk-flow stress 
fields. The complete derivation of the stress conditions for a Newtonian interface 
was given in Scriven (1960) and more recently in Edwards, Brenner & Wasan (1991). 
Resolving the stress condition into the tangential and normal components respectively 
yields the tangential and normal stress conditions : 

and 

1 1 2  2 
--P + - v +  -2 [YIxUx + w, - q x  (u, + W")] F? B e  N 

on z = q,  with N = (1  + q$)1/2, and 0 the surface tension normalized by the 
equilibrium tension 00. The non-dimensional parameters in the equations are : Froude 
number Fr = U/(gL) l l2 ,  Weber number We = pU2L/oo and Boussinesq number 
go = (hs + vs)) / (vL) ,  where hs and vs are respectively the surface dilational and shear 
kinematic viscosities of the surfactant. The free-surface boundary conditions (2.4)- 
(2.6) are nonlinear equations on z = q. Linearization of these conditions on z = 0 for 
the present numerical simulations will be discussed in 95. 

3. Transport of soluble and insoluble surfactants 

gives the advection-diffusion equation for the bulk concentration c(x,  z, t )  : 
Conservation of surfactant molecules in a two-dimensional continuous medium 

ac 1 
- + ucx + wc, - - (cxx + czz) = 0, 
at y e  

where c is non-dimensionalized by the equilibrium uniform concentration CO. The 
bulk-phase PCclet number 8, is defined as ge = U L / D ,  where D is the molecular 
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diffusivity of the surfactant. For the surface surfactant concentration y(x, t ) ,  the 
transport equation is (see for example Edwards et al. 1991) : 

where y is normalized by the equilibrium uniform surface concentration yo, and 
9; = VL/Ds  is the surface PCclet number, and Ds the surface diffusivity of the 
surface-adsorbed surfactant. F is the normal diffusive flux of surfactant from the 
bulk phase, which according to Fick’s law of diffusion, can be expressed as 

where X = yo/Lco is the non-dimensional equilibrium ratio between bulk and surface 
concentrations. For insoluble surfactant, there is no diffusive flux of surfactant from 
the bulk fluid, i.e. F = 0, and the surface-concentration equation (3.2) is solved 
independently of the bulk-concentration equation (3.1). Note that (3.2) and (3.3) are 
nonlinear equations applied on z = q. For the present simulations, a linearized form 
of these equations applied on z = 0 is employed (see $5) .  

Solution of the surface- and bulk-concentration transport equations (3.1) and (3.2) 
requires a constitutive equation for the interfacial flux transport F.  This means 
that a kinetic-rate expression is required for F at the interface in terms of local 
surface and substrate bulk (bulk concentration at the free surface) concentrations. 
Such a constitutive expression in general depends on a large number of factors 
including the physico-chemical properties of the surfactant, equilibrium conditions, 
and thermodynamic ideality of the interface and bulk phase (see, for example, 
Borwanker & Wasan 1983, and the review by Lucassen-Reynders 1981). In the 
present study we adopt two classical adsorption isotherms which assume non-ionic 
surfactant, and thermodynamically ideal bulk fluid and equilibrium conditions. 

The simplest kinetic expression is the linear rate equation: 

1 1 1  
P e X F  

F = ----(c - y), (3.4) 

where the equilibrium ratio X is equal to the ratio of adsorption to desorption rates, 
X = yo/(Lco) = I C , / ( L I C ~ ) .  Here IC, and red are the rate constants for adsorption 
and desorption respectively. Note that X measures the degree of solubility: for 
decreasing X ,  the surfactant become more soluble in the substrate; while for large 
X ,  the surfactant adsorbs preferentially on the free surface. The equilibrium relation 
X = 1 (i.e. rc,c0 = rcdyo)  can be assumed to obtain the instantaneous condition for co 
and yo which is the so-called Henry isotherm. In (3.4), F=D/(rc,L) is the interfacial 
transport rate number. For small F, the kinetics is the so-called diffusion-controlled 
adsorption. In this limit surfactant transport by diffusion is slow and adsorption can 
be considered to occur instantaneously relative to the diffusion process. In the limit 
of large F, the surfactant is transported rapidly to the interface by diffusion and the 
kinetics is known as absorption-controlled transport. 

For nonlinear adsorption kinetics, we focus on the expression which leads to the 
familiar Langmuir isotherm for equilibrium adsorption : 

where ym is the saturation surface concentration. The kinetics expression for such a 
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nonlinear isotherm is 

F = - 1 1 1  - - (-) p 
[c (1 + 7) - 71 1 

9 , X F  1 + p  

Note that when p -+ 00 the nonlinear expression becomes the linear kinetics (3.4). 
In summary, the transport of soluble surfactant is governed by Ye,  Pz, X and F 

for linear adsorption kinetics, and an additional parameter p for nonlinear kinetics. 
The transport is in general further affected by motions of the bulk phase through 
advection and by free-surface deformations. To gain some quantitative understand- 
ing of the effects of the physical parameters, it is instructive to consider first the 
diffusion-sorption transport in the absence of hydrodynamic convection and sur- 
face deformations. Specifically, we study the one-dimensional initial-boundary-value 
problem in the vertical ( z )  direction of the transport equations (3.1) and (3.2) with 
u,w,q = 0. (The numerical scheme for the diffusion-sorption transport problem is 
described in 96.) Initially, the bulk-surfactant concentration is assumed to be uniform 
( c  = 1) in the entire depth and the surface concentration y is set to zero. To quantify 
the rate of transport, an equilibrium time t, = t,(Y,, X ,  5, p )  is defined to be that 
required for the surface concentration y to reach 95% of the final equilibrium con- 
centration (y = 1). Following Pierson & Whitaker (1976), who studied the transport 
problem in a growing spherical drop, we present t, as a function of the interfacial 
rate number F for varying 9,, X and p in figure 1. 

Figure l(a) shows the dependence of t ,  on F for varying degrees of nonlinearity 
p of the sorption kinetics. For F less than around 0.01, the transport kinetics 
are diffusion controlled, and the equilibrium time is independent of the adsorption 
kinetics. Increasing nonlinearity of the kinetic isotherm (decreasing p)  reduces the 
equilibrium time. This is consistent with the calculations of Miller (1981) and 
differs from those of Pierson & Whitaker (1976) in which the equilibrium time is 
independent of nonlinearity. For large diffusion-adsorption rate F, the transport is 
adsorption controlled. The existence of a kinetic resistance to the surfactant transport 
increases the time needed to reach an equilibrium state. The dependence of surfactant 
transport on the bulk PClect number Pe is shown in figure l(b). The equilibrium time 
decreases with increasing bulk-surfactant diffusivity D (decreasing Pblect number). 
For decreasing equilibrium surface bulk-concentration ratio X ,  the equilibrium time 
also decreases as shown in figure l(c). In this case, the small-X limit corresponds to 
high solubility and weak adsorption. 

4. Equation of state 
In the presence of surfactant contamination, the surface-tension variation is related 

to the surfactant surface concentration y through a surface equation of state. For 
insoluble surfactants, quantitative experimental data are well documented (e.g. Gaines 
1966). Here we assume a linear variation of the surface tension with the surfactant 
concentration around their equilibrium points, i.e. 

where JYa = (yo/ao)(dc/dy),,l is the Marangoni number for the surfactant. 



Eflects of soluble and insoluble surfactant 

2 -  

1 -  

321 

0 :  

-1 

5 
1 

0.5 
0.1 

- 

2 -  

1 -  

0 

-1 

Ye = 600 

400 300 
200 

100 
. ' .  " ' . . . ' . . . . ' . . ' . ' . . . . '  ' ' . ' . . ' . .  

FIGURE 1. Equilibrium time t ,  as a function of interfacial rate transport number T for varying: 
(a) kinetic nonlinearity p (8, = 100, X = 0.01); (b)  Pilect number 8, ( p  = 1, X = 0.01); and (c) 
equilibrium coefficient X ( j  = 1, 8, = 100). 
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For soluble surfactant, Gibbs' adsorption equation provides an equilibrium rela- 
tionship between the surface tension and the surface concentration : 

x = 0.1 

0.05 

0.03 

0.01 

: 0.005 

" * ' "  ' . . . ,  - 

rs- 1 = R T E I  --&dy, y dc 

00 1 

where rso is the equilibrium surface tension, R the gas constant, and T the absolute 
temperature. Such an equilibrium relationship is usually assumed to be applicable to 
non-equilibrium kinetics involving instantaneous surfactant adsorption. For a linear 
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FIGURE 2. Surface tension (a - 1)/Aa as a function of surface concentration y 
for varying kinetic nonlinearity p. 

(Henry) isotherm, (4.2) becomes 

(4.3) 0 - 1 = R T - ( l -  Yo  y)  = Aa(1- y) .  
0 0  

For a nonlinear (Langmuir) isotherm, the equation of state becomes 

0-1 =RT-( l+P) ln  Yo  
00 

In figure 2 we show the surface-tension variation (0 - l)/Aa versus surface con- 
centration y for different p. For nonlinear adsorption kinetics (small p), the surface 
tension decreases exponentially as surface concentration increases. As P increases, the 
curve converges to the linear equation of state (4.3). 

The dependence of surface tension on the surfactant composition and the diffusion- 
sorption kinetics in the previous section are still among subjects of active research by 
surface physical chemists. A recent detailed review with updated references is given by 
Barger (1991). Here we have adopted the commonly used models to obtain a simple 
mathematical formulation for numerical simulation. The focus of the present study 
is on the coupling mechanisms between the hydrodynamics and the contamination 
transport but not specifically on the detailed interfacial processes themselves. Al- 
though more sophisticated and complicated expressions and experimental data may 
be used for the equation of state and the diffusion-sorption kinetics, the models we 
employ in the present study are adequate for the stated objective. In any event, a 
framework is provided in which more advanced models can be readily incorporated, 
evaluated and compared. 

5. Perturbation approximation and surface vorticity production 
To better understand the importance of the vortical flow and the surfactant in 

the free-surface interactions, we consider the role of the different hydrodynamic and 
surfactant effects on the production of free-surface vorticity. To facilitate the analysis, 
we assume that the free-surface boundary layer is of thickness 0(6), and the surface 
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deformations are of O(e) ,  with 6, e Q 1. Continuity within the boundary layer then 
requires w / u  - O(6) and momentum balance gives 6 - O(W,’/2). 

For consistency, we assume O(6) > O(e)  > O(S2) and carry out the perturbation 
and expansion about z = 0 systematically. The kinematic condition up to O(e)  is 

in which we have applied continuity to absorb a higher-order term associated with 
w. Collecting terms up to O(6) for the tangential-stress condition and O ( E )  for the 
normal-stress condition, we have 

and 

[;e 2 ] on z = o .  (5.3) 
r 2  - p +  - + -w, = q x x  - + -% 9: Be 

From (5.3), it is clear that Fr - O(e1I2), and we have assumed We 2 O(l), 
.,do 6 O(1) and have relaxed the order of go. These are consistent with properties 
of realistic bulk-phase fluids and surfactants (see for example Edwards et al. 1991). 
Note that for a clean surface, the above result to leading order reduces to w = 0 
and u, = 0 for the kinematic- and tangential-stress conditions respectively, which are 
equivalent to those for a free-slip surface. 

From (5.1) and (5.2), the free-surface vorticity o, can be obtained as 

3 e  

we 0, = u, + qu,, - w, = -2qxt - 2qu, - 2qxxu - 4qxux + --ox + a&,. (5.4) 

In the right-hand side of (5.4), the first term is associated with vorticity production 
due to free-surface unsteadiness, the second to fourth terms correspond to free- 
surface advection effects resulting from the convective term in the kinematic boundary 
condition (5.1). In particular, the third term, -2qxxu, is the well-known ‘curvature 
effect’ (Batchelor 1967; Lugt 1987) which can be derived using a stationary free 
surface. Such vorticity production due to surface convection was included in the 
computations of Dommermuth & Yue (1990) intuitively. Nevertheless, they neglected 
the higher-order term w,q in the boundary condition (5.1) (w,q = -uXq leads to ( ~ q ) ~  
in place of the linearized term uqx). Their kinematic condition is thus inconsistent and 
is a cause of their difficulty in conserving the mean free surface. The last two terms in 
(5.4) represent respectively the Marangoni and viscous effects of the surfactant and 
are absent for a clean surface. 

Assuming the surfactant concentration to be O( l), the linearized surfactant trans- 
port equation reduces from (3.2) and (3.3) to 

Such a linearized equation has been used in linear analyses of wave damping by 
surfactants (see, for example, van den Tempe1 1965). 

6. Numerical method and implementation 
The continuity and Navier-Stokes equations ((2.1)-(2.3)) together with the 

surfactant-transport equations (( 3. l), (5.5)), subject to the weakly nonlinear free- 
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surface boundary conditions on z = 0 ((5.1)-(5.3)) are solved numerically as an 
initial-boundary-value problem. The numerical scheme for the free-surface hydrody- 
namics problem is based on a primitive-variables formulation of the Navier-Stokes 
equations with spectral and finite-difference discretizations in the horizontal and ver- 
tical dimensions respectively. Continuity is enforced by solving a pressure Poisson 
equation in a vertically staggered grid system. Normal-stress free-surface condition 
(5.3) is used as Dirichlet condition for the Poisson equation. To evaluate z-derivatives 
of u (e.g. uzz)  at the free surface, the tangential-stress condition (5.2) is used. The free- 
surface elevation q(x, t )  is updated by integrating the kinematic free-surface condition 
(5.1). The computational domain is closed by imposing periodic conditions on the 
two vertical boundaries far away, and by a free-slip boundary on the bottom (with 
homogeneous Neumann condition for the pressure). A third-order Runge-Kutta 
method is used for time integrating the Navier-Stokes equation and the kinematic 
free-surface condition. The scheme is shown to conserve accurately the mean free 
surface, mass and energy. 

For soluble surfactant transport, we adopt a numerical scheme similar to that of 
Pierson & Whitaker (1976). The surface-concentration transport equation (5.5) is 
integrated in time via a third-order Runge-Kutta scheme. The bulk-phase concentra- 
tion on the free surface c(x, 0, t )  is then obtained by combining the adsorption kinetics 
(3.4) (or (3.6) for nonlinear kinetics) and the diffusive flux (right-hand side of (5.5)), 
after expressing &/dz by finite difference. The surfactant concentration is assumed 
to remain constant at the truncated bottom (c(x,z = -h,t) = 1). With Dirichlet 
conditions on the free surface and bottom, the bulk-concentration transport equation 
(3.1) is also integrated using a Runge-Kutta scheme. 

Miller (198 1) solved a similar initial-boundary-value problem with diffusion- 
controlled adsorption isotherms. He proposed a numerical scheme wherein the 
substrate bulk concentration at the surface, c(x, 0, t ) ,  is substituted for the surface 
concentration y in the surface-transport equation (5.5) using the equilibrium isotherm. 
The transport equation (5.5) then becomes the boundary condition for the bulk- 
concentration-transport equation (3.1). In contrast to Miller's scheme, the present 
method can be applied to any adsorption isotherm without iterations, in particular for 
nonlinear isotherms for which dy/dc cannot be determined explicitly. Furthermore, 
Miller's scheme cannot be extended to non-equilibrium kinetics. For validation, we 
have also implemented Miller's scheme for Henry (linear) and Langmuir (nonlinear) 
isotherms. The results of the concentration profiles and surfactant evolutions for 
these cases are graphically identical for both schemes. 

7. Interaction between a free surface and a vortex pair 
As a canonical problem for understanding the interaction mechanisms between a 

vortical flow and a free surface, we consider a vortex pair, symmetric about a vertical 
plane, rising vertically and impinging on the free surface. The initial vortical flow is 
composed of two counter-rotating vortices with a horizontal separation of 2L. Each 
vortex has circulation r and a Gaussian distribution with standard deviation rc (the 
core radius). The peak vorticity at the centre is w, = &I'/(nr:). All distances are 
normalized by L and velocities by U = r / (nL) ,  which is the translation velocity of 
an equivalent point-vortex pair in infinite fluid. The free surface is assumed to be flat 
initially. 

For the computations, the initial positions of the two vortex centres are located at 
(xc,zc) = (&1,-1.5), the peak vorticity is w, = 4 and the core radius is rc = 0.5. The 
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non-dimensional parameters used are 9; = 0.15, ge = 180 and We = 20; 9; = 150, 
= 0.1, go = 0.5 for both soluble and insoluble surfactants; and Ye  = 200, 

X = 0.01, T = 1 for the soluble surfactant. For the soluble surfactant cases, the linear 
kinetic expression (3.4) is used and the bulk concentration is assumed to be uniformly 
distributed over the bulk phase initially in $7.2. Effects of nonlinear sorption kinetics 
and non-uniform initial bulk concentration distributions are discussed respectively in 
$7.3 and $7.4. 

The length and depth of the computation domain is 16 and 4 with 256 and 64 
grid points respectively. The time step of the Runge-Kutta integration is 0.0025. 
Convergence of the simulation results has been checked systematically by decreasing 
both the grid size and time step, as well as varying the computational domain size. In 
all our computations, the maximum divergence (u, + w,) is less than lo-", the mean 
free surface (Jydx) is maintained to within and total energy is conserved to 
within 1%. 

7.1. Clean free surface-vortex interaction 
To obtain a baseline for comparison, we consider first the case of a free surface 
and bulk fluid free of contamination. In particular, we would like to understand 
the importance of free-surface convection in the production of surface vorticity. We 
show in figure 3 the surface vorticity as, surface elevation y and horizontal velocity 
u at t = 4 ( a ) ;  and 12 (b )  with and without the convection term included in (5.1). 
The presence of the convection term in the kinematic condition causes a slightly 
faster propagation of free-surface disturbances although differences in the surface 
horizontal velocity are small in the entire interaction. The surface vorticity, however, 
is significantly different in the two cases especially in the vicinity of the large free- 
surface trough (near x = 1.4). At t = 4, the convection produces a large negative 
vorticity peak near this wave trough where yxx > 0 and u > 0 and hence negative 
vorticity due to the curvature term w, - -2uy,, < 0. Similar features can be seen 
at a later time ( t  = 12) where the free surface with the convection term has a small 
negative curvature ripple in the trough resulting in a positive peak superimposed 
onto the surface vorticity distribution. The results without the convection term, on 
the other hand, produce very little surface vorticity at both early and later stages of 
the evolution. 

For a clean free surface the surface tension remains constant and its effect on 
surface-vorticity production is not explicit in (5.4). Surface tension appears in the 
normal-stress surface condition which serves as the Neumann condition for the 
pressure field of the bulk flow. To understand the effect of constant surface tension 
on the production of surface vorticity, we show in figure 4 the surface vorticity a,, 
the free-surface profile y and surface horizontal velocity u for We = 1, 20 and 00 

(no surface tension) (keeping F; = 0.15 and ge = 180). Varying the surface tension 
from vanishingly small to extremely large appears to have little effect on the surface 
velocity. The presence of large surface tension (We = 1) merely flattens the free 
surface and consequently reduces somewhat the surface vorticity production. 

The simulations in this section for clean free surfaces have been repeated for a broad 
range of Froude, Weber and Reynolds numbers (maintaining laminar conditions). It 
is found that for the range of low to intermediate Froude numbers for which weakly 
nonlinear free-surface boundary conditions are valid, the effects of the free-surface 
boundary layer are always very weak compared to those with surface contamination 
(see $7.2). The vortex pair approaches the free surface and then separates, travelling 
effectively parallel to the free surface. The free surface thus behaves very much like a 
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FIGURE 3. Surface vorticity w, (- - -), free-surface profile q (-), and surface horizontal velocity 
u(x,O, t )  (- - - - - -), with (lines with dots) and without (lines without dots) the convective term 
in the kinematic condition. Time t =4 (a); and 12 (b) .  (P;=0.15, 9$?',=180 and W,=20.) 

free-slip boundary - the surface shear stresses associated with a weak near-surface 
boundary layer being invariably small. Furthermore, constant surface tension has 
little qualitative effect on the underlying vortical flow. 

7.2. Effects of soluble and insoluble surfactants 

If the free surface is contaminated by surfactant, the Marangoni effect and viscous 
stresses due to the surfactant itself contribute to the production of free-surface vorticity 
as given by the last two terms in (5.4). Figure 5 shows the temporal evolution of the 
vorticity contours associated with the primary and the induced secondary vorticity for 
respectively the three cases of clean, insoluble-, and soluble-surfactant-contaminated 
free surfaces. The strong effect of surface contamination on the evolution dynamics 
can be seen in the magnitude of the secondary vorticity production (figure 5b,c) 
in contrast to the clean free-surface case (figure 5a). For insoluble surfactant, the 
secondary vorticity is strong enough to cause rebounding of the primary vortex tube. 
The secondary vorticity is first generated at the surface, then drawn down by the 
primary vortex tube, wraps around the tube and eventually forms a barrier which 
blocks further outward motion of the primary vortex. For the soluble surfactant case, 
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FIGURE 4. Free-surface vorticity o, (- - -), elevation q (- ), and horizontal velocity u 
(-----), for We = 1 (thin lines), 20 (medial thick lines) and co (thick lines) at t = 4 (a ) ;  
and 12 (b). 

the surface vorticity generation is somewhat weakened and its effect is less dramatic 
than the insoluble case. As mentioned earlier, the clean free surface case resembles 
that of a free-slip boundary with negligible effect from the weak surface vorticity 
generation. 

The effect of surface Marangoni and viscous stresses can also be seen in the 
horizontal velocities on the surface (figure 5d-f). For the surfactant-contaminated 
surfaces (figure 5 e , f ) ,  the surface velocities are reduced compared to the clean surface 
flow especially in a region downstream of the moving primary vortex. This reduction 
is most dramatic for the insoluble-surfactant-contaminated surface (figure 5e) where 
in the region beyond the peak of the secondary vorticity the surface tangential velocity 
effectively vanishes. 

Figure 6 shows the velocity vectors and corresponding vorticity contours at t=20 
for respectively the clean, insoluble- and soluble-surfactant cases. For the insoluble 
surfactant, the near-surface velocities downstream of the primary vortex tube (figure 
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FIGURE 5. Vorticity contours of the primary w=l (-), and induced secondary vorticity w = -0.2 
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free surfaces at t = 2,4,. . . ,20. The corresponding free-surface horizontal velocities u(x, 0, t )  are 
shown in (d-f) at t = 4,8,12,16 and 20. 

6b) are much reduced compared to those under the clean and soluble-surfactant- 
contaminated surfaces (figures 6a and 6c). Such a separated boundary layer results 
in strong vorticity shedding (figure 6e) which blocks the primary vortex, causes it to 
rebound, and consequently reduces the induced velocities on the free surface. Such 
interactions are still appreciable but not as strong for the soluble-surfactant case 
(figures 6c and 6 f )  but are absent under a clean free surface (figures 6a and 6 4 .  

The dependence of secondary vorticity production on surfactant solubility is further 
quantified in figure 7, which shows evolutions of the secondary vorticity circulation, 
Ts, for the clean, insoluble- and soluble-surfactant cases. The circulation Ts is defined 
in the domain x > 0 , Ts = s,” J:h wdzdx for o < 0, and b and h are half-length 
and depth of the computation domain respectively. For a clean surface, the induced 
circulation remains small throughout the interaction process. For a soluble surfactant, 
Ts decreases first and then increases. This is due to the fact that the induction of 
the primary vortex on the surfactant redistribution is reduced by transport between 
the bulk and surface surfactant. For the insoluble-surfactant case, Ts decreases 
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FIGURE 6.  Velocity vectors and vorticity contours (dashed lines indicate negative values) at t = 20 
for clean (a, d ) ;  insoluble-surfactant-contaminated (b ,  e ) ;  and soluble-surfactant-contaminated (c ,  f )  
free surfaces. 

montonically even after rebounding of the primary vortex by the induced secondary 
vorticity. 

The strong vorticity production for the contaminated surfaces and the effect of 
surfactant solubility are also shown in figures 8, where we plot the distributions of 
the surface concentration y and the free-surface elevations y~ for the insoluble- and 
soluble-surfactant cases. For the insoluble-surfactant-contaminated surface (figure 
Sa), a surfactant ‘shock’ forms on the interface with a ‘clean hole’ near the centre 
and an accumulation of contamination downstream. Such a severe inhomogeneity of 
the surfactant distribution is caused by the large advection induced by the (primary) 
vortical flow. The abrupt concentration variation near the surfactant shock results 
in a large surface-tension gradient and consequently generates significant secondary 
free-surface vorticity according to (4.3) and (5.4). Near the shock front, a small free- 
surface hump appears (near x = 3.4 in figure 8b) which resembles that of a Reynolds 
ridge near the front of a stagnant film (see Scott 1982 - compare, for example, the 
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FIGURE 7. Evolutions of circulation of secondary vorticity in the domain x 2 0, Ts, for clean, 
insoluble- and soluble-surfactant-contaminated free surfaces. 

free-surface slopes near the stagnation edge of figure 8b to those in Scott’s figure 
5).  Such a free-surface ridge was also noted by Hirsa & Willmarth (1994) in their 
experiments. This ridge-like surface deformation is, however, not present for the 
soluble surfactant case (figure 8d). 

If the surfactant is soluble, the surface concentration becomes more smoothly 
distributed (figure 8c) causing a reduction of the restoring tensile stress on the 
surface. The milder surface surfactant gradients are a result of the vertical transport 
of surfactant via adsorption/desorption kinetics on the surface. Upstream of the 
primary vortical flow, a cleaner surface is formed as surfactant is advected out. In this 
region, surfactant in the bulk is adsorbed to the surface. On the downstream surface, 
desorption occurs which reduces the aggregation of surfactant on the surface. This 
vertical transport is further enhanced by the up and down swelling on respectively 
the upstream and downstream sides of the primary vortical flow. 

The Reynolds ridge in figure 8(a,b) is an unsteady one produced over a transient 
vortical flow. To further elucidate the features of a Reynolds ridge, we simulate a 
steady Reynolds ridge on a contaminated free surface with a ‘stagnant’ surfactant 
distribution. We construct this steady-state flow by imposing a steady flow boundary 
condition on the bottom of the domain starting from an otherwise quiescent condi- 
tion under an insoluble-surfactant-contaminated surface. Specifically, we choose an 
imposed bottom velocity which corresponds to a pair of steady Gaussian vortices 
fixed at (x,y) = (&3,-1.5). The peak vorticity (0, = 4) and core radius (r,  = 0.5) 
are otherwise identical to those for the free vortices we studied above. The length 
and depth of the computation domain are 12 and 3 respectively and the hydrody- 
namic and surfactant parameters are the same as those in the transient case. Steady 
condition at the surface is reached after t = 40. 

Figure 9(a) shows the surface quantities at t = 50. As in the transient case 
(figure 8a, b), a surface ridge forms near the front of the stagnant surfactant shock 
(at x w 3.5). The surface slope qx changes rapidly in this region similar to that 
observed by Scott (1982) (a quantitative comparison can not be made since the 
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FIGURE 8. Surface concentration y at t = 2,4,. . . ,20 and free-surface elevations q at 
t = 12,14,. . . ,20 for insoluble (a, b), and soluble (c, d )  surfactant-contaminated free surfaces. 

underlying flows in the two cases are different). Corresponding to this surface ridge 
and steep surfactant gradient, the free-surface vorticity exhibits a sharp (negative) 
peak while the surface (tangential) velocity attenuates into the region of large surface 
surfactant concentration. For comparison, the corresponding results for a clean free 
surface are shown in figure 9(b). The surface vorticity is very small for the clean 
free surface (the magnitude of maximum vorticity is only about 0.1). The most 
prominent differences are the attenuation of the surface elevation and velocity by the 
surfactant. 
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The choice of We = 20 and F; = 0.15 in our simulations in this section corresponds 
to a vortex pair with an initial separation of 2L = 6cm with rising velocity of 
U w 2 m s-'. These scales are representative of many of the experiments (e.g. Hirsa & 
Willmarth 1994). Our parameters of Aa = 0.1 and g,, = 0.5 for soluble and insoluble 
surfactants are not unrealistic for a natural film with an ideal monolayer assumption. 
The choice of .F = 1 with X = 0.01 for the soluble surfactant refers to dynamic 
(neither diffusion nor adsorption controlled) kinetics (see 37.3) with equilibrium time 
(cf. figure lc) t ,  - 0(1), i.e. dimensional equilibrium time T, - L / U  - O(0.01)~. 
To maintain laminar conditions, our values for the bulk viscosity = 180 and 
surfactant diffusivities Pe = 200 and 9: = 150 are artificially low. The dependencies 
of the interactions on the various soluble and insoluble surfactant properties are 
addressed at length in 37.3. 

The question remains as to whether the strong surfactant effects we show here can 
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be expected of flows more typical of ‘prototype’ scales such as may be expected in 
the wake of a moving body such as a ship. According to the free-surface dynamic 
boundary condition (2.5) and (5.2), the effect of tangential stress due to surface-tension 
variation is scaled by Wyl or ( U2L)-’ for given surfacmnt/fluid properties. To check 
this, we repeat the simulations wherein we maintain We = 20 but set F; = 0.0003 
which correspond to a problem with 2L = 1.4 m and U w 5 cm s-’. (In this case, 
,Ma = 0.05, B0 fi: 0, and Be = 400, 9; = 200.) Figure 10 shows the results for the 
clean and (insoluble) contaminated free surface cases. The effect and features due to 
the presence of (insoluble) surfactant are quite comparable to those observed earlier 
for a smaller length scale L. 

7.3. Dependence on soluble- and insoluble-surfactant properties 
The important parameters governing insoluble surfactants include surface diffusivity 
(9;), surface elasticity (Aa) and surface viscosity (go). Surface diffusivity serves as 
transport dissipation which also smooths the surfactant gradient and reduces the 
production of free-surface vorticity. Surface elasticity determines the magnitude of 
the restoring tensile stress in the tangential-stress condition (5.2) and surface-vorticity 
generation indicated by (5.4). The effect due to the presence of surface viscosity is 
less clear since B0 appears in both the tangential- and normal-stress conditions, (5.2) 
and (5.3). 

Figure 11 shows the free-surface vorticity us and its two main contributions due 
to surfactant, Beox/We and BOuxx, for varying B0 = 0.005, 0.5 and 2, at t = 4. 
The underlying flow is still that induced by a rising vortex pair as in previous 
sections. Increasing surfactant viscosity B0 increases the contribution of the BOuxx 
term to o, production, while that associated with the Marangoni effect Beox/We 
decreases. Thus there are two opposing effects of surface viscosity on free-surface 
vorticity production: viscous surfactant stress contributes to the shear stress at the 
surface and increases the vorticity production; on the other hand, surface viscosity 
obstructs surfactant transport, reduces the concentration gradient and consequently 
the vorticity generation. 

For soluble surfactant, additional properties of importance are the bulk diffusivity 
(Pe), equilibrium ratio between surface and bulk concentration (X) ,  ratio between 
diffusion and adsorption rates (F), and saturation surfactant concentration (p )  for 
nonlinear kinetics. As we saw in $7.2, for initially uniformly distributed surfactant, 
solubility generally diminishes the surfactant shock and weakens the free-surface 
boundary layer. Surfactant rupture, such as that shown in figure 8(a), generally 
does not occur if there is an adequate rate of adsorption/desorption from/to the 
bulk phase. The distribution of surface-adsorbed surfactant is determined by the 
competition among the effects of surface convection and diffusion, and surface/bulk 
diffusion-sorption kinetics. The transport is also influenced strongly by the up/down 
swellings associated with the vortical flow. 

As we show in figure 1, the diffusion-adsorption ratio F is the most crucial among 
the transport properties in determining the kinetic resistance against adsorption to 
the surface. For low F, the kinetics is diffusion controlled and the kinetic resistance 
remains constant. For high F, the resistance against adsorption increases linearly 
with F and the kinetics are adsorption controlled. Figure 12 shows the evolutions 
of surface concentration for F = 0.001,1, and 100 which correspond respectively 
to diffusion-controlled, dynamic and adsorption-controlled kinetics. For low kinetic 
resistance (5 = 0.001), the bulk surfactant quickly diffuses to the surface where it is 
adsorbed. The same happens in the opposite direction, in which the surface surfactant 
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is desorbed and diffuses to the bulk phase. Such transport to/from the bulk phase 
compensates for and reduces the surface transport due to convection and diffusion. 
As F increases, the resistance against the sorption process increases. For F = 100 
(figure 12c), the resistance is large enough so that the surface transport is nearly 
independent of the bulk transport. Consequently, a sharp surfactant front forms as in 
the case of an insoluble surfactant. For F = 1 (figure 12b), the competing sorption 
and diffusion rates are comparable, and the effect of solubility is between the previous 
two extreme kinetics. 
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FIGURE 11. Free-surface vorticity w, (-), and its two main contributions due to surfactant, 
9&cX/We (- . - . -), and gou, (- - -), at t = 4 for &?,, = 0.005 (a);  0.5 ( b ) ;  and 2 (c) .  

In figure 13, we show the dependence on 5 of the surface concentration dose 
b 

d(t) = 1 - b-' 1 y(x,t)dx , 

where b is the length of the (periodic) domain. Physically, d(t) represents the amount 
of surfactant desorbed from the surface to the bulk phase. For 5 = 0.001, d(t)  
oscillates but increases continuously with time, indicating a steady desorption of 
the surface concentration to the bulk phase in the presence of high solubility. For 
Y = 100, the kinetics resist the sorption process and the total amount of surface 
surfactant remains almost unchanged. Between the two extremes, 5 = 1, the amount 
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FIGURE 12. Surface surfactant concentration y at t = 4,8,. . . ,20 
for F = 0.001 (a);  1 (b) ;  and 100 (c ) .  

of surface concentration depends on the competition among the transport processes. 
All our results so far for soluble surfactants are based on linear sorption kinetics 
( p  = co) and the linear equation of state. Nonlinearity of the kinetic isotherm increases 
the sorption rate as shown in figure l(a). This effect is shown in figure 13 for F = 1 
for the nonlinear kinetics. Consistent with figure l(a), the concentration dose in this 
case increases with time in contrast to the linear kinetics. 

The dependence of surface tension on surfactant composition also becomes non- 
linear for nonlinear sorption kinetics according to Gibbs’ equation (4.2). For the 
nonlinear equation of state (4.4), surface tension decreases exponentially with in- 
creasing surface concentration as the kinetics become nonlinear (see figure 2). This 
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FIGURE 13. Surface Concentration dose d ( t )  for linear sorption kinetics with F = 0.001, 1 and 100; 
and for nonlinear sorption kinetics (- . - . -) with F = 1. 

means that for nonlinear kinetics the restoring surface tension due to variation of the 
surfactant distribution increases as the concentration increases. In contrast, for linear 
kinetics, the resorting tension remains constant for the same concentration gradient. 
The effects of nonlinear sorption kinetics and the equation of state on the evolutions 
of the surface concentration and surface tangential velocity are shown in figure 14. 
For comparison, the corresponding evolutions for linear kinetics are also plotted. The 
most prominent difference is the much slower propagation of the nonlinear kinetics 
surfactant front and consequently the surfactant does not pile up. Such a difference 
in surface transport between linear and nonlinear kinetics is primarily a result of 
increasing restoring tensile stress with concentration for the nonlinear kinetics which 
causes the surface to become stiffer as soon as the surfactant gradient forms. Such 
stiffness slows down the hydrodynamic convection on the free surface (see figure 14b) 
and reduces the transport of surfactant. 

1.4. Eflect of initial stratijication of the bulk (soluble) surfactant 
Our results so far for soluble surfactant assume an initially uniform bulk concen- 
tration, i.e. c(x , z , t  = 0) = 1. In such cases, the bulk phase serves as a surfactant 
reservoir which smooths out the variations in the surface concentration and generally 
diminishes surfactant effects as compared to the insoluble case. This situation is 
not necessarily true if the (initial) bulk surfactant concentration is not uniform. To 
understand this, we consider the same problem of the rising vortex pair in a fluid 
with an initial vertically stratified bulk concentration. Specifically, we consider two 
types of vertical stratification: a contaminated bulk layer next to the free surface with 
clean water below, and a layer of clean water next to the surface with surfactant con- 
centration below. For the purpose of numerical simulations, the initial concentrations 
are assumed to have the form 

where the positive/negative sign corresponds to a contaminated/clean bulk fluid layer 
next to the free surface, and H measures the thickness of the top-contaminated/clean 
layer. The initial surface concentration remains the same (y(x, t = 0)  = 1) in all cases. 



338 W-T. Tsai and D. K. P. Yue 

2.0 

1.5 

y 1.0 

0.5 

0 
X 

0 1 2  3 4 5 6 1  
X 

FIGURE 14. Surface surfactant concentration y (a) ;  and horizontal velocity u(x,O,t) (b)  at 
t = 4,8,. . . ,20 for nonlinear (-) and linear (- - -) sorption kinetics. (/3 = 0.1 and F = 1). 

Figure 15 shows the evolution of the surface horizontal velocities u(x,O,t) and 
the vorticity contours at t = 20 for initially top-contaminated stratification with 
respectively H = 2 (‘thick‘) and H = 0.5 (‘thin’) surfactant layers. For comparison, 
the uniform bulk concentration case considered earlier is also plotted. The Marangoni 
effect is clearly enhanced for this type of stratification. As expected, the effect is more 
pronounced for the thinner initially contaminated bulk layer. In this latter case, the 
reduction of the free-surface horizontal velocity and production of surface vorticity 
are in fact more similar to those for the insoluble surfactant case (cf. figures 5 and 6). 
The corresponding surface concentration y(x, t )  and substrate surface concentration 
c(x, 0, t )  evolutions are shown in figure 16. For the thin stratified layer case, a portion 
of the free surface is swept clean as the underlying bulk surfactant is exhausted. 
The surface concentration features are not unlike those in figure 8(a) for insoluble 
surfactant. The thick surfactant layer evolutions are generally in between the uniform 
and thin stratification results. These features can be explained from contour (grey- 
scale) plots of the bulk concentration, shown in figure 17. The amplification of 
(surface) surfactant effect as the bulk contamination thickness is decreased is clearly 
seen. The primary vortical flow produces an upwelling of (eventually) clean water 
near the centre which enhances the creation there of a low surface concentration 
region. 

The stratification effects are quite different when the initial bulk distribution is 
reversed, i.e. when the surface surfactant and (uniform) bulk surfactant are separated 
by a layer of clean water. Figure 18 shows this case for H=0.5 and 2. In contrast 
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FIGURE 15. Surface horizontal velocities u(x, 0, t )  at t = 4,8,. . . ,20 and vorticity contours (dash lines 
indicate negative values) at t = 20 for initially uniform (a, d ) ,  and stratified bulk contamination near 
the free surface with H=2 (b , e )  and 0.5 (c,f). 

to the previous case, the horizontal velocities downstream of the primary vortex 
are now increased and are in fact greater than those on a clean surface (cf. figure 
5 4 .  Looking at the vorticity contours, we see that in addition to the secondary 
vorticity, tertiary vorticity with the same rotational sign as the primary vortex is 
produced further downstream on the free surface. The surfactant distributions on 
the surface evolve very differently from what we have seen so far. The downstream 
surface remains clean while the surfactant is accumulated by advection (figure 19). 
Two steep surfactant fronts form on both sides of the region where the surfactant 
is aggregated. The generation of tertiary vorticity observed in figure 18 is due 
to the presence of the surfactant slope facing downstream. Contours of the bulk 
concentration (figure 20) reveal its role in the overall evolution. The primary vortical 
flow causes an upwelling of bulk contamination into the initially clean bulk region, 
eventually reaching the free surface to create a distinct front which then generates 
the tertiary vorticity. It is also clear that a deeper initially clean layer between the 
free surface and uniform bulk concentration below intensify such reversed surf- &tant 
effects. 
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t = 4,8,. . . ,20 for initially uniform (a, d ) ,  and stratified bulk contamination near the free sur- 
face with H=2 (b , e )  and 0.5 (c,f). 

One way to further quantify the effect of surfactant stratification is to consider the 
evolution of the total secondary vorticity generation, measured, say, by its circulation, 
Ts (in the domain x 2 0). Figure 21 shows such evolutions for different initial 
surfactant stratifications. For comparison, the result for a uniform bulk concentration 
case is also plotted. It is clear that, measured from the production of secondary 
vorticity, top contamination develops a stronger surfactant effect with the negative 
circulation -Ts increasing with decreasing surfactant depth H .  The opposite is true 
for bottom contamination which produces less (negative) secondary vorticity as H 
increases. The result for uniform initial concentration is between the two stratified 
cases. These trends are consistent with expectation once the physics associated with 
figures 17 and 20, for example, are understood. 

8. Interaction between a free surface and a shear flow 
An important area of interest is the effect of surfactants on the near-surface wake 

behind a moving body. To study this, we consider as a canonical problem surfactant 
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FIGURE 17. Bulk concentration c(x, z ,  t )  for initially stratified bulk contamination near the free 
surface for H = 2 (left column) and 0.5 (right column) at t = 2,8,14 and 20. 

effects on the evolution of a free-surface shear flow. Following Triantafyllou & Dimas 
(1989), we start with a two-dimensional shear flow corresponding to that immediately 
behind a NACA 0003 hydrofoil (Mattingly & Criminale 1972): 

u(z, t) = 1 + (u, - l)sech*(koz), 

where we have normalized lengths by the characteristic depth of the shear layer and 
velocities by the free-stream velocity of the parallel flow. The values of the profile 
parameters used are u, = 0.0012 and ko = 0.88137 so that (1 - u) / ( l  - u,) = 0.5 at 
z = -1. To trigger the unstable evolution, we perturb the flow by superimposing 
an unstable mode obtained from linear stability analysis (Triantafyllou & Dimas 
1989). According to this analysis, there are two different classes of unstable modes 
corresponding respectively to low (mode I) and high (mode 11) wavenumbers for the 
present low Froude number simulations. 



342 W-T. Tsai and D. K. P. Yue 

0.15 

U 0.50 

0.5 

0 1 2 3 4 5 6 7  
X 

0 

-1 

-2  

2 3 4 5 6 1  

0 

-1 

-2 

0 1 2 3 4 5 6 7  
X 

0 1 2 3 4 5 6 7  
X 

-3  (4 
2 3 4 5 6 1  

0 

-1 

-2 

-3 

2 3 4 5 6 1  
X 

FIGURE 18. Free-surface horizontal velocities u(x,O, t )  at t=4,8,. . . ,20 and vorticity contours (dash 
lines indicate negative values) at t = 20 for initially uniform (a, d) ,  and stratified bulk contamination 
away from the free surface with H=0.5 (b , e )  and 2 (c,f). 

Figure 22 shows the evolutions of the vorticity field for a mode I instability case 
(wavenumber k = 0.4) for respectively clean, insoluble and soluble surfactant. The 
parameters of the problem are 8, = 0.5, We = 300, 9: = 300, go = 0.5 and 
Aa = 0.2. For soluble surfactant, Pe = 300 and linear adsorption kinetics are 
used with X = 0.01, F = 1.0, and the initial bulk concentration is uniform. The 
computation domain is 27c/k by 8 deep with 128 grid points in each direction. In 
the early stage of the evolution (t = 40), the unstable perturbation grows in a 
similar manner for all three cases with the exception of somewhat stronger secondary 
vorticity production for the contaminated flows. As time increases, however, variations 
of the surface surfactant concentration resulting from the velocity fluctuations lead 
to significant generation of free-surface secondary vorticity. This vorticity eventually 
interacts/interferes with the growing mode in the primary shear flow leading to 
qualitatively distinct features for all three cases. At a late time (t  = 400) for the 
clean free surface, the shear flow instability has ceased to grow owing to viscous 
dissipation. For the insoluble surfactant flow, the secondary vorticity wraps around 
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FIGURE 19. Surface concentration y ( x , t )  and bulk concentration on the surface c(x,O, t )  at 
t = 4,8,. . . ,20 for initially uniform (a, d) ,  and stratified bulk contamination away from the free 
surface with H=0.5 ( b , e )  and 2 (c,f). 

and pushes down on the primary perturbed flow vortex. Above the secondary 
vortex, a strong tertiary vortex with the same sign as the primary vortex forms 
beneath the free surface. For the soluble case, the effect is diminished by surfactant 
absorption/desorption, and the vortical structure of the (clean) primary flow is still 
somewhat preserved. 

We show in figure 23 the free-surface elevation q, vertical velocity w and surfactant 
concentration y (for the contaminated surfaces) at an intermediate time t = 280. 
For the clean free surface, a non-sinusoidal elevation with a pronounced trough is 
observed and is in fairly good agreement with the inviscid simulation results of Dimas 
& Triantafyllou (1994) (see also Dimas 1991). For the insoluble surfactant case, a small 
hump in the surface elevation corresponding to a Reynolds ridge can be observed 
near the surfactant front at x w 1 and is clearly revealed in the surface vertical 
velocity. The soluble surfactant results are qualitatively more similar to the clean flow 
with a slight shift in the phase of the main features. The overall understanding and 
conclusions about the effects of insoluble and soluble surfactants are thus consistent 
with what has been obtained for the vortex pair interaction problem ($7). 
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FIGURE 20. Bulk concentration c(x, z ,  t) for initially stratified bulk contamination away from the 
free surface for H = 0.5 (left column) and 2 (right column) at t = 2,8,14 and 20. 

Finally, we show the results for a mode I1 unstable (k  = 2) flow in figure 24. The 
parameters are Fr = 1.5, 9?, = 400, 9, = 400, P: = 400, B0 = 0.1, &la = 2.0, X = 
0.005 and 9 = 0.01. According to the inviscid simulation (for clean water) (Dimas & 
Triantafyllou 1994), such a mode I1 perturbation grows slowly and eventually reaches 
saturation leading to a quasi-steady flow. These evolution characteristics are also 
seen in the present simulation results for viscous flows. The vortical structures under 
clean, insoluble- and soluble-surfactant-contaminated surfaces all reach saturated 
states after t = 30 as figure 24 shows. The surfactant effects for such a mode I1 
unstable shear flow are substantially different from those of mode I instability or the 
vortex pair in 57. In this case the submergence of the unstable shear flow is of the 
same order as the wavelength of the instability and the vortical flow associated with 
the instability is relatively weak. As the flow approaches an equilibrium state, the 
surfactant distributions for the insoluble and soluble cases likewise approach steady 
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FIGURE 21. Evolutions of circulation of secondary vorticity Ts for bottom contamination with 
H = 2 (a), 0.5 (b) ,  initially uniform distribution (c ) ,  and top contamination with H = 2 (d ) ,  0.5 (e). 
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soluble-surfactant-contaminated free surfaces. 
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FIGURE 23. Free-surface elevation q (-), vertical velocity w on the free surface (- . - . -), 
and surface surfactant concentration y (---) at t = 280 for (a) clean; (b )  insolu- 
ble-surfactant-contaminated ; and ( c )  soluble-surfactant-contaminated free surfaces. 

states and cease to generate free-surface vorticities. In contrast to the cases studied 
earlier, there are no strong interactions between the near-surface and submerged 
vortical flows. 

The findings in this section further elucidate the closed-loop interaction of the 
Marangoni effect. For mode I instability, the unstable waves develop strong oval- 
shaped vortices below the free surface (see figure 22a, also Dimas & Triantafyllou 
1994). These vortices cause redistribution of surfactant on the free surface which in 
turn produces strong secondary vorticity and changes the structure of the primary 
vortical flow. On the other hand, mode I1 instability develops into much weaker 
vorticity compared to mode I. The induced surfactant variation is milder and the 
associated surface vorticity generation is weak. Consequently, the primary unstable 
mode eventually reaches a quasi-steady state. 
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FIGURE 24. Vorticity contours (dash lines indicate negative values) for a mode I1 unstable shear 
flow at t = 5,30 and 60 for (a) clean; ( b )  insoluble-surfactant-contaminated; and ( c )  solu- 
ble-surfactant-contaminated free surfaces. 

9. Conclusion 
We consider the effects of soluble and insoluble surfactants on laminar free- 

surface vortical flows. A quantitative description is presented and a numerical model 
developed which include the convection-diffusion-sorption processes governing the 
evolutions of bulk and surface surfactant concentrations and their coupling to the 
free-surface vortical flow dynamics through the stress boundary conditions. Two 
canonical vortical flows are considered: a pair of vortex tubes impinging the free 
surface and an evolving unstable shear flow beneath the free surface. 

Our numerical results display and quantify the closed-loop interactions between the 
surfactant and the underlying vortical flows. For small to moderate Froude number 
motions under a clean free surface, surface vorticity production (due to curvature 
and unsteadiness) is small and the effect of the free surface is generally insignificant, 
somewhat similar to a free-slip surface. In the presence of even a small amount 
of surfactant, the Marangoni effect associated with variations in the surfactant 
concentration dominates the surface vorticity generation. Significant surface vorticity 
can be produced leading to strong interactions with the underlying flow. Since the 
surfactant transport is itself a result of the flow, the coupled interaction dynamics 
can be quite varied. The effects are generally in between, but qualitatively distinct 
from, either a no-slip or free-slip boundary. If the surfactant is soluble (and the 
kinetics is not absorption controlled), surfactant effects are generally diminished for 
(initially) uniform bulk concentrations. When stratification of the bulk concentration 
is considered, however, the evolution dynamics becomes even more complicated and 
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surfactant effects may be completely changed and even amplified relative to the 
insoluble case. 

A main objective of this study is to investigate the implications of the presence 
of contamination on free-surface vortical and turbulent flows in the laboratory and 
in the ocean. The present results show that depending on the local variation in 
surfactant concentration, the nature of stress boundary conditions on the free surface 
can vary from that of effectively free-shear to almost no-slip. This has a direct effect 
on the nature of near-surface turbulent fluctuations on a microscopic scale. Since 
variations in the surfactant concentration have in general temporal and spatial scales 
of the order of the flow itself, the macroscopic flow-scale structures near the free 
surface must necessarily also be modified. Such effects should play an important role 
in observable small- to medium-scale coherent flow structures near the surface. 
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